Redox-sensitive stimulation of type-1 ryanodine receptors by the scorpion toxin maurocalcine.

نویسندگان

  • Michel Ronjat
  • José Pablo Finkelstein
  • Paola Llanos
  • Luis Montecinos
  • Hicham Bichraoui
  • Michel De Waard
  • Cecilia Hidalgo
  • Ricardo Bull
چکیده

The scorpion toxin maurocalcine acts as a high affinity agonist of the type-1 ryanodine receptor expressed in skeletal muscle. Here, we investigated the effects of the reducing agent dithiothreitol or the oxidizing reagent thimerosal on type-1 ryanodine receptor stimulation by maurocalcine. Maurocalcine addition to sarcoplasmic reticulum vesicles actively loaded with calcium elicited Ca²⁺ release from native vesicles and from vesicles pre-incubated with dithiothreitol; thimerosal addition to native vesicles after Ca²⁺ uptake completion prevented this response. Maurocalcine enhanced equilibrium [³H]-ryanodine binding to native and to dithiothreitol-treated reticulum vesicles, and increased 5-fold the apparent Ki for Mg²⁺ inhibition of [³H]-ryanodine binding to native vesicles. Single calcium release channels incorporated in planar lipid bilayers displayed a long-lived open sub-conductance state after maurocalcine addition. The fractional time spent in this sub-conductance state decreased when lowering cytoplasmic [Ca²⁺] from 10 μM to 0.1 μM or at cytoplasmic [Mg²⁺]≥30 μM. At 0.1 μM [Ca²⁺], only channels that displayed poor activation by Ca²⁺ were readily activated by 5 nM maurocalcine; subsequent incubation with thimerosal abolished the sub-conductance state induced by maurocalcine. We interpret these results as an indication that maurocalcine acts as a more effective type-1 ryanodine receptor channel agonist under reducing conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maurocalcine and domain A of the II-III loop of the dihydropyridine receptor Cav 1.1 subunit share common binding sites on the skeletal ryanodine receptor.

Maurocalcine is a scorpion venom toxin of 33 residues that bears a striking resemblance to the domain A of the dihydropyridine voltage-dependent calcium channel type 1.1 (Cav1.1) subunit. This domain belongs to the II-III loop of Cav1.1, which is implicated in excitation-contraction coupling. Besides the structural homology, maurocalcine also modulates RyR1 channel activity in a manner akin to ...

متن کامل

Differential effects of maurocalcine on Ca2+ release events and depolarization-induced Ca2+ release in rat skeletal muscle.

Maurocalcine (MCa), a 33 amino acid toxin obtained from scorpion venom, has been shown to interact with the isolated skeletal-type ryanodine receptor (RyR1) and to strongly modify its calcium channel gating. In this study, we explored the effects of MCa on RyR1 in situ to establish whether the functional interaction of RyR1 with the voltage-sensing dihydropyridine receptor (DHPR) would modify t...

متن کامل

Transduction of the scorpion toxin maurocalcine into cells. Evidence that the toxin crosses the plasma membrane.

Maurocalcine (MCa) is a 33-amino-acid residue peptide toxin isolated from the scorpion Scorpio maurus palmatus. External application of MCa to cultured myotubes is known to produce Ca2+ release from intracellular stores. MCa binds directly to the skeletal muscle isoform of the ryanodine receptor, an intracellular channel target of the endoplasmic reticulum, and induces long lasting channel open...

متن کامل

Maurocalcine interacts with the cardiac ryanodine receptor without inducing channel modification.

We have previously shown that MCa (maurocalcine), a toxin from the venom of the scorpion Maurus palmatus, binds to RyR1 (type 1 ryanodine receptor) and induces strong modifications of its gating behaviour. In the present study, we investigated the ability of MCa to bind to and modify the gating process of cardiac RyR2. By performing pull-down experiments we show that MCa interacts directly with...

متن کامل

Transient loss of voltage control of Ca2+ release in the presence of maurocalcine in skeletal muscle.

In skeletal muscle, sarcoplasmic reticulum (SR) calcium release is controlled by the plasma membrane voltage through interactions between the voltage-sensing dihydropyridine receptor (DHPr) and the ryanodine receptor (RYr) calcium release channel. Maurocalcine (MCa), a scorpion toxin peptide presenting some homology with a segment of a cytoplasmic loop of the DHPr, has been previously shown to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell calcium

دوره 53 5-6  شماره 

صفحات  -

تاریخ انتشار 2013